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Equilibrium orientation of an ellipsoidal particle inside a dielectric medium with a finite electric
conductivity in the external electric field
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We study the stability of the orientation of an ellipsoidal dielectric particle immersed into a host dielectric
medium under the action of the external electric field. It is assumed that the particle and the host medium have
a finite electric conductivity. We demonstrate that an equilibrium orientation of the ellipsoidal particle changes
with time in a stationary electric field with a constant direction. It was found that during time infEneaa
equilibrium orientation of the spheroidal particle with a finite electric conductivity remains the same as the
equilibrium orientation of an ideal dielectric particle. During time interValwhereT=T,+T, is a period of
the external electric field, the equilibrium orientation of the axis of symmetry of the particle is normal to the
initial equilibrium direction.
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I. INTRODUCTION tivity. Indeed, here an instantaneous moment of forces acting

The dvnamics of solid or liquid particles in a host mediumat a particle depends not only upon its instantaneous orien-
y quid p tation but also on its orientation during the earlier time mo-

under the actiop of an external electric field is of .the_oreti(,:alments. The reason for this behavior is as follows. The total
and technological interest. Technological application in- - . . . . . .
cludes manipulation of microparticles in biotechnology andt®rduéM acting upon a dielectric ellipsoidal particle with a
genetic engineerinfil], nanotechnology2,3], and noncon- finite conductivity is the sum of two terms] =M, +M,,. The
tact measurements of physical properties of particles. Inteffirst term isM,=P, X E,, whereP, is a dipole moment de-
action of an external'elec.trlg field with an inclusion embed'termined by the initial polarization of the medium aﬁgi is
ded into a host medium is important for understanding the . L =G
mechanisms of the electric breakdown of dielectrics, in at2" appﬁed electric field. The second termhg,=P, X Eq,
mospheric physics and aerosol dynanfiés6]. The results whereP,, is a dipole moment caused by a flow of an electric
obtained in numerous theoretical and experimental studies otharge from the external source to the surface of a particle.
particle dynamics under the action of the external electricThe dipole momen®P, and the torqueM, settle during a
field were summarized in several survey papers and monashort time interval of a local relaxation while the dipole mo-

graphs[6-9]. _ ~ mentP, and the torqueM, settle during timer, of a mac-
One of the issues that warrant theoretical and experimengscopic relaxation that depends upon the conductivities of
tal studies is the rotation of liquid or solid particles embed-particle and a medium. If an applied electric field is normal
ded into a weakly conducting host medium. This issue hagg the axis of symmetry, for the case of an ideal dielectric the
been considered in a number of publications for the case .| dipole momenB=P_andM=M_=0. For the case of a

when a particle has a sphe_rlcal and a sphermdal_ SlegE nonideal dielectric, the dipole moment associated with a free
e.g.,[10-14), and the rotation of ellipsoidal particles was

analyzed in[15,16. These studies were concerned mainlychargeP, of a rotating particle is not aligned with the ap-
with applications, and some important aspects of the dynanPlied electric field because of the finite relaxation time so
ics of particles in the external electric field were not ad-thatM =P, X Ey+ 0. This difference in the directions of the

dressed. Rotation of ellipsoidal particles with a shell in theexterna| electric field and the d|p0|e momé—h’[is associated
nonstationary external field was studied[&b,16 using @  with Quincke rotation that was extensively discussed in the
simplified approach that did not require a comprehensiveiterature[7,10,13,14. In this study we investigate a torque
analysis of the dynamics of the particle. In this study weacting at a stationary particle as a function of its orientation
obtained a general expression for an instantaneous momeggirection of its axis of symmetiywith respect to the applied

of forces acting at an ellipsoidal particles as a function of thesjectric field. Thus we assumed that the angular velocity of a
orientation of its principal axes. particleﬁ=6

.For a case of an |Qeal dielectric the mat_hem.ancgl fqrmu- We show that in a medium with a finite electric conduc-
lation of the problem is knoyvﬁl?,;.iﬂ. Thg S't“a“of‘ is dif- tivity, a torque acting at the particle in a stationary electric
ferent for the case of a particle with a finite electric conduc-g.14 can change the orientation of a particle even when the

direction of the field is fixed. Thus, if initially the particle

was in a state of a stable equilibrium, then after some time
*Email address: yuli@menix.bgu.ac.il the initial orientation of the particle loses its stability. Our
"Email address: elperin@menix.bgu.ac.il analysis shows that there exist two time intervalsandT,,
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the time required for a charge redistribution taking into ac-
count a finite conductivity is much larger than the character-
istic time of microscopic relaxation of the dipole moments
induced by local polarization.

The host medium with an embedded particle can be con-
sidered as a piecewise homogeneous medium. Since a charge
is localized at the inhomogeneities, in the case of a piecewise
homogeneous medium it accumulates at the interface bound-
aries. Density of a surface free chargés determined by the
following relations:

FIG. 1. Ellipsoid with semiaxes;,a,,a3 (a;=a,<asz: prolate
spheroid;a; =a,> a3 oblate spheroidand electric permittivitye, 3 _ -
and conductivityo, inside a host medium with permittivity; in PexdV="| ydSOr pe= 75(U)|V u|, 3)
the external electric field,. ] ] )
where 8(u) is a Dirac’s delta functionu=F(x,y,z) andu

such that during timd the stable orientation of the particle =0is an equation of the surface. Equatlcﬁm}san(.j(3) yield
is the same as for the case of an ideal dielectric. During timgoundary conditions at the interface boundary:
interval T,, whereT=T,+T, is a period of the external elec- - - . dy
tric field, the direction of stable orientation is normal to that [N-D]=7y, [N-j]=- re (4)
for the case of an ideal dielectric.

This paper is organized as follows. In Sec. Il we present &ere[A]=A,-A_, A, and A_ are values of a functioi at
mathematical formulation of the problem and discuss the Unge external and internal surfaces, respectively, Mrig the
derlying physics. Special attention is given to those featuregyiernal unit normal vector.

in the formulation of the problem that arise due to a finite a5 mentioned earlier. the main difference between a
conductivity of a host medium. In particular, we elucidate theweakly conducting medium and an ideal dielectric is charge

physical aspects that constitute the difference between theansport from the external source to the interface boundary.

problem for the case of a weakly conducting dielectric and  1ime variation of a charge constitutes the principal differ-
an ideal dielectric case. In Sec. lll we calculate the basiGce petween a leaky dielectric and an ideal dielectric model
parameters required to determine the electric field and thFl? 18. In the following section we determined time depen-

electric current of a dielectric ellipsoid with permittivits,  jencies of this charge and electric potenal
and conductivityo, that is embedded into a host medium

with permittivity e, and conductivityo;. In Sec. IV we in-
vestigate stability of the orientation of particle in the external
electric field.

Ill. ELECTRIC FIELD AND ELECTRIC CURRENT IN A
MEDIUM WITH AN ELLIPSOIDAL INCLUSION

In this section we determine an electric field of an ellip-

Il. MATHEMATICAL EORMULATION OF THE PROBLEM soid immersed into a medium with a finite electric conduc-
tivity. Using the obtained results we investigate variation of

Let us consider an ellipsoidal particle with permittiviy ~ the electric field during electric charge flow from the external
and conductivityo, embedded into a host medium with per- source to the surface of the ellipsoid, variation of the electric
mittivity e, and conductivityo; in the external electric field chargey at the surface of the ellipsoid and dependence of the
with a strength§0 (see Fig. 1 electric charge relaxation time upon the geometrical param-

In a conducting medium a potential component of an elec€ters of the ellipsoid.

tric field §=—§¢ is determined by the following system of Consider an elllpsom.ia'l |'nclu3|on with th? haIf—Ieng.th.s of
equations: the axesa;,a,,as, permittivity e, and electric conductivity

o, that is immersed instantaneously into a host medium
V.D= o with permittivity &1 and electric conductivityr; in the exter-
nal electric fieldg, (see Fig. L
ok = - The solution of an electrost.atic pro.blem is pgrformed in a
—+V-j=0, (1) system of coordinates associated with an ellipsoid. In this
& system of coordinates the equation of a surface of the ellip-
where electrostatic inductioB and electric current density soid and the_compone_nts of the electric field are determined
are determined by the following relations: by the following equations:
3 3
D=eeE, j=oE, E=-Veo. ) u=S x¥a2-1, E=DEE, &=Vx. (5
Hereafter we assume that a particle is at rest. Forit@)ltor =t =t
an electrostatic induction implies that a characteristic timdf before the insertion of an ellipsoidal particle, the electric

required to attain an equilibrium polarization is substantiallyfield was homogeneous then electric potentiaan be writ-
smaller than other characteristic times in the problem. Thusen in the following form:
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v N=S0mS) g5 (13)
0=2 =~ 2 Egx(L+F(4D), ®) e e

where¢ (and coordinatesy, s used beloware the ellipsoidal Equations(11)~(13) imply the following expression for a
coordinates determined through, x,,%s by formulas pre- fre'e electric charge accumula;ed_at the surface of the ellip-
sented in17] (Chap. 1, Sec. ¥and ¢ is chosen such that soid due to the external electric fielgln,s,t):

=0 corresponds to a surface of the ellipsord0. The poten- I

tial ¢ in each medium is determined by the Laplace equation: y=7"N, (14)
V20 =0. ) where Ehe formula for the components of the vectdr
=27 € reads
The expression foF;(£,t) can be written as follows: _
¥ = e0e1Ea(D¥i(1). (15)
F(EU=Fu(&Doe) +Fab-9), ® These components have a simple physical meaning. They are
where equal to the magnitudes of the electric charge at the apexes
1. x=0, of the ellipsoid:N;=6;, N,=6,, and N;=6;. Hereafter we
() {O, x<0. will write as it is generally agreed thd¥,=(1,0,0, N,

=(0,1,0, and N3:(0,0,]). Then y;, v,, v are the magni-
tudes of the free charge at these locations.
Coefficientsy,(t) are determined from the boundary con-

Using formula(6) and solving Eq(7) with continuity con-
dition for the potentialp we arrive at the following equation:

Fia(O1i(§) ditions (4). The first equation in the boundary conditiof®
Fi(&t) = , 9 i
(&) 1.0) (9)  vyields
where (for details of this solution sefl7], Chap. 1, Sec. 4 Foit) = - % (16)
ie
li(&) = J o+ )R( S’ R(s) = \(s+ad)(s+ ad)(s+a3), wheren;=R(0)1;(0)/2 is a depolarization factor, On,<1,
& 23 =1, fi,=«.Nn;, and k,=¢,/e;—1. The second equation
(10 in the boundary condmone!l) implies that
and functionF,(t) is determined from the boundary condi- eoeNi [~ Eg(t)
tions (4). In order to determine the functidR(t) it is con- - %E 0 i
venient to represent a free electric chargey,s,t) as Fa(t) = 1 1+7 a , (17)
io
3
' ,t — (7, ,t , 11 Whel’efi(,:K(,ni andKU.:U'2/O'1_1.
Y750 ,gl nms.Y (1 Formulas(16) and (17) yield the following equation for
v):
where yi(7,s,t) is a free electric charge accumulated at theyI _
surface of an ellipsoid due to thih component of an electric - _ Eu(t) 1 K. — K. 1
Qi _Ra &
field. For the case of an ellipsoid in a homogeneous external %O + %) Eo () )T (18
electric field Ey(t), it is also convenient to represent o ' e 10
Y(7,,s,t) as where ip=ggeq/ oy and 7 =7g[ (1 +f;,.) /(1 +f,,)].
Assuming that the initial free electric charge of the par-
(st = €081 EOi(t)Xi(OvUS);}i(t), (12) ticle is zero, the expression fdk(t) can be written as

h,(0,7,5) 287

t
whereh;(0,7,5) is a Lamé'’s coefficient along the coordinate (O =%, 1) = EOi(t):ifo e B (t - ndr,
¢ at £€=0, x(0,7,9)= X(&,7,9)|e0, N1(0,7,5)=17s/2R(0)
and in a Cartesian coordinate systap0)=332 (x*/a’)!/2 (19

In order to derive Eq(12) for y(#,s,t) one can use Eq. where () =(k,—«,)/(1+f;,). If the initial free electric
(6) for a potentiale and Eq.(2) that determines a relation charge of the particle is not zero one must account for the
between a potential and electric field. At the surfaceelectric field produced by this charge. Hereafter it is assumed
of the ellipsoidal particle(N-V)e= (1/h1)(<9<p/(7§)|§:0 and that initially the particle was not charged.
xil 9¢e=o=3[%(0,7,5)/82]. The latter relations and Egs. f qumullza(éia) al(ljows us tto dettﬁ”t“”r‘]e thet fU_”CtiO'ﬂi(:)
. N 2 or given Ey(t) and parameters that characterize a system.
g;) ar)d-(10)~|mply that (N-V) oo EOi(t.)X‘(O)/zai h1(0,72,5). In a case wheig(t)=const the result is presented below. In
oefficientsy,(t) depend only upon time. . . o
_ - the case of a stationary field the result is given by &q).
The unit normal vector at the surface of the ellipsdld | this study we expressed the considered physical character-
can be represented 85X ;N;€ (see, e.g.[17]) with istics through functiondl;(t).
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Substituting Eqs(18) and (19) into Eq. (16) yields
1-T0(0) | L) _
1+f;, 1+f,,

Fia(t) = 1. (20)

The magnitudes of the electric fields and currents can be

determined using formula®), (5), and(20):

1-1540) | () )
1+f, 1+f,)’

3
E,=>, EOi(t)él(
i-1

2= 05E,  D,=ggesEs. (21)

PHYSICAL REVIEW E71, 056611(2009

not a subject of this study. Equatig®5) allows us to deter-
mine a ratio of relaxation times along different axes of the
ellipsoid, a andb:
-1
Ta—To Ny T K
a 0: b o (26)

BT MK,

Equations(25) and (26) and conditions —¥ k, <o, 0<n;
<1 imply that whenx, > k, andny<ny, thenr, < 7,, while
when k, < k, andn,<n, then 7,> 7. It is known[17] that
polarization factors;,n,,n; and half-lengths of the axes of
ellipsoid a;,ay,a; are related by the following condition:
whena; > a, > a5 thenn; <n,<ns. Therefore if a relaxation

The value of the accumulated charge at the surface can ligme of a free electric charge inside an ellipsoid is less than a

determined from formulagll), (12), and(19):
3
Eqi(1)x(0) x, —

>

i=1

_ €081

" hy(0)

eI ).

22
2a12 1+ fi(J’ ( )

According to Eq.(21) the electric fieldliz can be written as
a sum of two fieldsE,=E,+E_, where the fields, describes
a renormalization of the external electric fidlg due to po-

larization. At the initial time}t=0, ES(O) recovers the known
formula for the electric field of the dielectric ellipsoid with a
permittivity e, imbedded into the host medium with a per-

mittivity e, (see, e.g., Ref{17]). The term E(, describes a

characteristic relaxation time in the host medium 7y or
k. < K4, then relaxation of a free electric charge occurs faster
along the shorter axes. Alternatively, when> 7,5, charge
relaxation proceeds faster in the direction of the longer axes.

For a cylinder with the axis directed along the coordinate
axis Xxs, n1=n2=% and n;=0. The relaxation time along the
coordinate axiXs, 73=7, and relaxation times along axgs
andxy, m=1=1(k,+2)/(k,+2)]. In the case of a thin disk
with the axis directed along the coordinate axis n;=n,
=0, nz=1 and relaxation times argy=[(x,+1)/(x,+1)],
TI=To=T0-

Polarization factors), can be expressed as functions of
the ratios of the half-lengths of the axes of ellipsoid to a

renormalization of the external field due to an aCCUmuIatiorha”_'ength of one of the axes. Hereafter we expregsas
of the electric charge at the surface. If the external field isy =n,(a; a}), wherea|=a,/a; andaj=a,/a,. In Fig. 2 we

constant,Eq =const, thenll;(t)=1-eY1, and att— o, the

showed the dependencemf as a function of parameteeg

configuration of the electric field is identical to the configu- gnq a). Since ny(a},ap)=ny(ay,a;), the same set of the

ration of the electric field produced by an ellipsoidal inclu-

sion with electric conductivityo, imbedded into the host
medium with electric conductivityr;.

Formula(22) describes a free charge at the surface of
particle. The total charge is

o= edlE]-N. (23)
The latter formula can be rewritten as
3
_ & X(0)Eq(t) (( (1 -TLi(t) k.  IL(Dk,
Y= 2 > + .
hl(O)i:1 2aI 1+fis l+fi0.
(24)

Thus at the initial timell;(t)=0, the total charge coincides

with the polarization charge that is formed during micro-

scopic time by local polarization of the material.

a

curves describes the dependencefé;,a;) by a change of
the parameters; —a; anda,— a;. In Fig. 3 we showed the
dependencens(a;,a;) by presenting the set of curveg
ns(ay) for different values of paramete,.

Consider now the behavior of a total surface chasge
which is determined by expressi@B4). As in the case of a
free charge expression fot, can be written similarly to Eq.
(14):

Y= ';’c : N: (27)
where
_ Ko(1=TL(1) Hi(tm,)
Yei = 8OEoi< 1+f, + 1+f,, . (28

The valuesy,; are the magnitudes of the total surface charge

Since time variation of electric charges and currents isat the locationsN;=(1,0,0, N,=(0,1,0 andN3;=(0,0,1
essentially determined by the magnitude of the relaxatiorat the surface of the ellipsoid.
times 7 it is of interest to analyze the dependence of these In a particular case of a spheme=§ and the coefficients
relaxation times on geometrical parameters of the ellipsoidf;, andII;(t) are independent of the directionIn this case

Expression forr, [see formulas after Eq18)] yields
(Ks B Kcr)ni

25
1 +K0.ni ( )

Ti~ To=To

Equation(25) implies that wherk, < «,,, 7, <7y for an arbi-
trary directioni. It is known that conditionsr,> 75 or «,

veil Ye=Eoil Eqw @nd the electric field inside a sphere is di-
rected along the external electric field. In the case of an
ellipsoid ./ y.c# Egi/ Eq, @nd the direction of the internal
electric field varies with time even when the direction of the

external electric fielcéo is constant.
Equations(27) and (28) imply that a charge at any loca-

>k, are the necessary conditions for Quincke rotation thation at the ellipsoid’s surface is determined by three compo-

has been extensively discussed in the literafdr&4] and is

nentsy,. In Fig. 4 we showed the time dependence of the
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surface chargey.(t), for different values of; andaj; in the
case of the constant external fiedlg whenEy-€,=0 and the

angled betweeréO andé&;, 0==/4. In Fig. 5 we showed the
time dependence of the surface chargg(t) for the same
values of the parameters.

Inspection of Figs. 4 and 5 shows that whern> «, the
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FIG. 2. Dependence of polar-
ization factorn, vs the nondimen-
sional lengthsa; and a,, a;=1
[(D) a;=2; (2) a,=5; (3) a,=10;
(4) a,=20].
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this behavior is that the sign of the free chargé® flowing

to the surface is opposite to the sign of the polarization
chargey,.(0). This is exactly the situation which occurs in the
case of Quincke rotation. Whet, < «,, the sign of the free
chargey(t) flowing to the surface coincides with the sign of
the polarization charge,(0), and the total surface charge

total surface charge.(t) decreases with time. The cause for y.(t) grows with time.
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FIG. 4. Time dependence of a surface chayggeat locationN FIG. 6. Time dependence of a free chargg at location N
=(1,0,0 in a constant external electric fieI%!O. \ector éo is lo- =(1,0,0 in a constant external electric field. Vect%dis located in
cated in the plan€&;, é; (Eo-éZ:O) and is directed by the angle¢  the planeg;, &; (EO-éZ:O) and is directed by the angle= /4 with
=/ 4 with the axis of symmetry of the spherdi®: a;=a,=0.05, the axis of symmetry of the spheroi®: a;=a,=0.05, ./,
k! k,=0.1, prolate spheroidfl: a;=a,=50, «,/x,=0.1, oblate  =0.1, prolate spheroid;: a;=a,=50, ,/ k,=0.1, oblate spheroid;
spheroid; ¢: a;=a;=1, «./x,=0.1, sphereA: a;=50,a;=0.05, ¢: a;=a,=1, «,/k,=0.1, sphere;A: —-a;=50, a,=0.05, «,/k,
k! k,=0.1, ellipsoid; ®: a;=a,=0.05, «,/k,=10, prolate spher- =0.1, ellipsoid;®: a;=a;=0.05, ./ x,=10, prolate spheroicl:
oid; M: a;=a,=50, «,/k,=10, oblate spheroid;#: a;=a;=1, a;=a,=50, «,/«k,=10, oblate spheroid®: a;=a,=1, «./«,=10,
ksl k,=10, sphereA: a;=50, a;,=0.05, «,/ k,=10, ellipsoid. sphere;A: a;=50, a,=0.05, x,/ x,= 10, ellipsoid.
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FIG. 5. Time dependence of a surface chaygeat locationN FIG. 7. Time dependence of a free chargg at location N
=(0,0,) in a constant external electric field. Vectyis located in ~ =(0,0,1) in a constant external electric field. Vectgy is located in

the planed;, & (E,-6,=0) and is directed by the ange=7/4 with  the planed,, & (E,-6,=0) and is directed by the angte= 7/4 with
the axis of symmetry of the spheroi®: a;=a,=0.05, «,/«, the axis of symmetry of the spheroi®: a;=a,=0.05, ./,
=0.1, prolate spheroid;]: a;=a,="50, «,/ k,=0.1, oblate spheroid; =0.1, prolate spheroid;): a;=a,=50, ./ x,=0.1, oblate spheroid;
¢ ay=ay=1, «,/k,=0.1, sphere;A: a;=50, a,=0.05, «,/k, O aj=ay=1, k,/k,=0.1, sphere;A: a;=50, a,=0.05, «,/k,

=0.1, ellipsoid; ®: a;=a,=0.05, ./ k,=10, prolate spheroidl: =0.1, ellipsoid; ®: a;=a,=0.05, «,/x,=10, prolate spheroidf:
a;=ay=50, k,/k,=10, oblate spheroid®: a;=a;=1, «./x,=10,  a;=a,=50, «,/k,=10, oblate spheroid#: a;=a,=1, «,/«,=10,
sphere;A: a;=50, a,=0.05, k. / x,= 10, ellipsoid. sphere;A: a;=50, a;=0.05, x,/ x,= 10, ellipsoid.
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15

-1
tan (E21/E23)

FIG. 8. Time dependence of a magnitude of the electric field FIG. 9. Time dependence of the angle between the internal elec-
inside spheroid in a constant external electric field. Vedgris tric field and the axi§ of symmetry of spheroid in a constant external
located in the plangy, &; (Ey-6,=0) and is directed by the angle glegtric field. VectoiE, is located i.n the plaqél, &; (Eg-€,=0) and
g=m/4 with the axis of symmetry of the spheroi®: aj=a, IS directed by t,he :’mgl@z m/4 with the axis of symmetry of t’he
=0.05, x,/k,=0.1, prolate spheroidi]; a,=a,=50, «,/k,=0.1, spljermd (O: a;=a,=0.05, KS/K,,.:O:l, prorlate’ spheroidfd: a;
oblate spheroid:0: aj=aj=1, «,/x,=0.1, sphere/: a;=50,a;, - 22=°0. KS/K’{,=0.1, 9b|ate spheroid0: a;=a,=1, Ks/KafO-l/v
=0.05, k,/k,=0.1, ellipsoid; ®: aj=a}=0.05, k,/k,=10, prolate ~ SPNere; A: =50, 2,=0.05, x./x,=0.1, ellipsoid; ®: a;=a,
spheroid; m: a}=a,=50, «,/x,=10, oblate spheroid#$: aj=a;, - 0-09x./x,=10, prolate spheroidl: a,=a;,=50, x,/«,=10, ob-
=1, k,/ k,=10, sphereA: a;=50, a}=0.05, x,/ x, =10, ellipsoid. late spheroid; ¢ : al_:az_:l, k.l k,=10, sphere;A: a;=50, a;

=0.05, ./ k,=10, ellipsoid.

In Figs. 6 and 7 we showed the behavior of the compo- _ .
nentsy, that according to Eqq14) and(15) is completely M =¢g,P X Ey, (29
determined by the behavior of a surface free chayge.
Inspection of these figures shows that for the same values a¥here P is a total dipole moment of the ellipsoid. Using
parameters the sign of (t) is opposite to the sign of;(0)  formulas(3) the expression foP can be written as
whenk,> k, and the sign ofy/ (t) coincides with the sign of
velO) when = o p=[ wras (30
Time behavior of the electric field inside an ellips&glt)

is shown in Figs. 8 and 9. In Fig. 8 we showed time variatior\Nhere integration is performed over the surface of an ellip-
of the magnitude of the electric fiel,(t) while in Fig. 9 we soid. Subsgtuting Eq524) into Eq. (30) we find that P
showed the time dependence of the anglt)

=tar}(E,,/E,3). Inspection of these figures reveals that
when k> k,, the magnitude of the electric fielh(t) grows p= sOVE Eyi€ ,(
while for k, <k, it decreases with time. The reason for this
behavior is that whemr, > k, the electric field produced by Fort<r, in the constant external field;(t) ~t/ 7., and for-

the free charge(t) is directed along the external f|eﬂi1, and  mula (31) recovers the known expression for a dipole mo-

it partially compensates the field produced by the polarizament of a dielectric ellipsoidsee[17], Chap. 2, Sec. )9

tion charge. Equationg29) and(31) yield a formula for a torque acting at
the ellipsoid for an arbitrary orientation of the external elec-
tric field and axes of the ellipsoid:

A-ILM)k, LMK,
1+f;, +1+fi(,>' (39

IV. STABILITY OF THE ORIENTATION OF THE

ELLIPSOIDAL PARTICLE IN THE EXTERNAL 3 3 A-TLM)k, L«
ELECTRIC FIELD M = ggeV > EO|EOk8|kmem< ' U)
i=1 k=1 1+f;, 1+fi,
Let us now analyze the stability of the orientation of a (32)

particle by considering the dependence of the torque acting

at the particle upon the orientation of the particle with re-wheres;y is a fully nonsymmetric unit tensor.

spect to the direction of the external electric field. To this end Let us consider a spheroid with a coefficient of the depo-
we use the following formula for a torque acting at the par-larizationn,=n,= 2(1 n), n=ng, f;,=f,,, andf;,=f,,. In a
ticle: case of a prolate in the direction 6§ spheroid,n;<ny,n,,
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while for an oblate ellipsoith;>ny,n,. The limiting cases of -1 K2co(wt VEZ sin(26
a cylinder(ny<ny,n,) and of a disk(ng>ny,n,) were con- M, = M03n K Cos(wh) . M= M.
sidered earlier. 2 (1+f5)(1+1y) 2

Let us define angleg in the plane spanned by vectors (39

Iio,é3 (see Fig. 1 The electric field§0 can be represented as The expression foM,, can be written as
follows: o
M - 3n-1
Mo’ == O(KE SE)( )[(al + aza)27'(2))C0§(a)t)

+ bow7o(Kk,by + bk, w?75)SiN2wt)], (40)

éo = E, Ccos#€; — E, Sin 6€;. (33

In the adopted coordinate systgsee Fig. 1 a total torque
acting at the particle is directed along tBg axis, i.e.,M where

=MEé,. Using Egs.(32) and (33) we arrive at the following n+1 3k — i+ 3di k2 + dor3
formula for M: SRR LU P A W A
2 (1 +f3o’)(l +flo)
Moo g0e1VES Sin(26) (1 ~II5(t) 1 —Hl(t)> (41)
2 \ 1+fg, 1+f,,

_1+n n(1-n)

= +
+KU< I, _ I )] (34) b=yt
1+f,, L+fy,

-2 -
In a constant electric field at0, I15(0)=I1,(0) and d,= (1-n 2+ n(1 n)(l K ﬂ) (42)
4 2 72 )
coeVESSiN(26)  k%(3n-1)
M(0) = . 35
© 4 (1 +f,)(1 +fg,) (35) 0:1(1+f35)(1+f18)
2 (l + f3cr)(1 + flo') ,

Equation(35) recovers the known formula for a torque act-
ing at the dielectric spheroid as a function of the angle be- 1
tween the axis of symmetry of the spheroid and the direction by=2+xk, 2 by =2 +xk, 2 (43

of the external electric fiel&, (see, e.g[17,18). Two ori-

entations when the torque vanishés,0 and6=/2, corre- L= (1 +Fa) (1 +F1 )1 +Fa)(1 +F1)(1+ 0?2 (1 +w?7d).

spond to stable and unstable equilibrium orientationsnfor (44)

< 1/3 and, inversely, to unstable and stable equilibrium ori-

entations fom>1/3 (for details see the Appendix The Egs.(39) and (40) yield the following expression for a
Let us consider now stability of equilibrium orientations total torque:

for t—o. For t/m>1 andt/7,>1, I14(t)=II,(t)=1 and an-1

M(t—)=M,, is determined by the following formula: M = MOT[MC+ 2M, tan(wt)Jco(wt), (45)
M. = eoelVESin20)  «5(3n-1)  (ag where
4 (1 +fl(r)(1 +f3(r) 2
— Ky Ko~ Kg 2
Comparing Eqs(35) and(36) shows that equilibrium orien- Me= (1+f,)(1+f5,) L (g + ay0’1g)  (46)
tations at=0 andt— o coincide. It can be shown that at the
intermediate times & t < o the sign ofM., is the same as the 2nd
sign of M(0) even in the cases with a strong anisotropy, browT
> 75 OF 73> 7. Ms= == bk, + bk, )k, = k,). (A7)

Consider now a stationary external electric fietg(t)

:EO coqwt). Substituting this expression into EJ.9) yields
a formula forlI;(t) that in the limitt> 7;, 7, reads

When 0—0, Mg—0 andM =«2/(1+f,,)(1+f3,), i.e., ex-
pression(36) is recovered.
Equation (45) yields the following condition for the

codot) + o7 sinfwt) 1 change of an orientation of a particle with respect to its ori-
|

IT;(t) = 1 +w27i2 cosal)’ (37) entation at the initial momerit=0:
o ) ) M.+ 2Mgtanwt) < 0. (48)
Substituting Eq.(37) into Eq. (34) we arrive at the fol-
lowing formula for the total torque acting at a particle: Using Egs.(39) and(45) it can be shown that an inequality
(48) is equivalent to the condition thad(t)/M(0) <0. In the
M=M_+M,, (39 Appendix we demonstrated that this condition implies the
change of the direction of the stable orientation of the ellip-

where soid.
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Let us determine now a time interval inside the period ofupon its amplitude. It must be noted that independent of the
the external electric field during which the conditior{48) magnitudes oM. and|M, p,<p;, P,<1/2, andp;>1/2.
is satisfied. Consider only the case wheiR<<0, e.g.,(k,
< k,) andM;>0. In this case the inequalit$#8) implies that _ V- CONCLUSIONS _ _
there exist two time intervals where this inequality is satis- We studied the moment of forces acting on a stationary

fied: dielectric ellipsoidal particle imbedded in a host dielectric
medium with a finite electric conductivity under the action of

tan—l( M, >< t< ™ a_ho_mogene_ous, time independent or varying with time, elec-

2M{ 2 tric field. Using a dipole moment approach we showed that

in a constant electric field stable orientations of an ellipsoid
(49) for an ideal dielectric and a dielectric with a finite electric

conductivity are the same.
) ) ) ) ) » We demonstrated that an equilibrium orientation of the
During two time intervals determined by inequalitid®) the  g|lipsoidal particle changes with time in a stationary electric
direction of the stable orientation becomes normal to theje|d with a constant direction. It was found that during time
direction of the initial stable orientation, i.efs— 65+ /2,  interval T, an equilibrium orientation of the spheroidal par-
where 6 is an angle between the external electric field andicle with a finite electric conductivity remains the same as
the principal axis of the ellipsoid in the initial stable equilib- the equilibrium orientation of an ideal dielectric particle.
rium. For a prolate spheroié=0, while for an oblate spher- During time intervalT,, whereT=T,+T, is a period of the
oid #;=7/2. Define two time intervalsT,; and T,=T-T,. external electric field, the equilibrium orientation of the axis
During time intervalT, the stable orientation of the particle of symmetry of the particle is normal to this direction.
coincides with the initial stable orientation while during time ~ The derived expressions for electric fields and currents
interval T, [sum of two time intervals determined by Egs. [Egs.(21) and(22)] and dipole momenftEq. (31)] are valid

M

2|M

3
andm+ tan‘1< ) <ot< 777

(49)] it changes. Equation@9) imply that also for the case of a rotating ellipsoid. In the latter ca&®
andEg(t) are spatial coordinates and components of electric
T, = 1(77+ 2 tan—l( Mc )) T, = 2 tan—l(%) field in a frame attached with the ellipsoid. Transformation
® 2M /)’ 2w M. into the laboratory frame is performed using the formulas

(50) Eo =0 ()G (1) andx; =0y X, WhereG,(t) andx,, are com-
ponents of the electric field and coordinates in a laboratory

Assume that an ellipsoid is subjected to random perturbaframe. The orthogonal matri®, is related with angular ve-

tions ur.li.for.mly di.stribu'ged in time. Then a probabiIMthat ~locity Q by an equationOy =&y O, Where ey is the

an equilibrium orientation of the ellipsoid is the same as inLevi-Civita tensor. Using these formulas and expressions for

the case of an ideal dielectrf =T,/(T,+T,) is II,(t) and dipole momenP(t) allows to obtain equations
1 1 . governing the dynamics of a dipole moment similar to equa-
p; = 5 + p tan‘l(m>, (51)  tions used in the studies of the Quincke rotati@8,14].
Si

The obtained results imply a possibility of the existence
while the probability that its equilibrium orientation is nor- ©f @ mechanism of rotation of liquid particles that is alterna-

mal to that in the case of an ideal dielectyig=T,/(T; tive to the known effect of Quincke rotation. Indeed, the
+T,) is external electric field causes the deformation of a liquid par-

ticle along the direction of the field, and we showed that the
1 2|M| direction of the equilibrium orientation of the ellipsoidal par-
P2 =—tan M ) (52 ticle changes with time in a stationary external field.

. o _ In this study we considered an isotropic medium. The
Consider a limiting case wheiMy{ <M. and wro<1. This  sjtyation is completely different in the case of an anisotropic
situation occurs in the range§,=1, wro<1 and k,<1,  material. In the latter case the torque depends not only upon
wTo<kK,. In these limiting cases the orientation of the ellipsoid with respect to the direction of

bobyic, (K, — K,)@To K(ZT the ex_ter_nal electric field but upon the mutual orientation; of
s= . . c= m thg principal axes pf the medium, pr|nC|paI' axes of the elllp-
1o 3o soid and the direction of the external electric field. Clearly, in
(53 this case our approach that uses the ellipsoidal coordinates
and expansion of the external electric field into independent
components directed along the principal axes of the ellipsoid

and

n+1 is not valid. In this study we also considered only the case

1k - 270 2+ Ky 2 when M;<0, e.g., (k,<«k,) and M;>0. Analysis of this

- = & [ . 54 . . . . . . .
P2 7 ok (L+f)(1+fs) (54) problem in other cases is a subject of ongoing investigation.

Thus the probability to detect an ellipsoid with an orientation APPENDIX

normal to the orientation in the case of an ideal dielectric Neglecting inertial effects the equation describing dynam-
depends only upon the parameters of the system and thies of an orientation of a spheroid in the vicinity of the equi-
frequency of an applied electric field and does not dependlbrium position reads
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8081VE€ Sin(2 9)
2 ’

70=M(0), (A1)

where a coefficienty>0 depends upon the viscosity of a

medium,M is a torque, and is angular velocity. _
Equation(Al) implies that the angle of a stable orienta- where M(t) is some normalization function that does not

M(6,) = Mo(O)M(), Mgy= (A4)

tion 6 is determined by two conditions: depend on angl® [see Eqs(34), (36), and(39)].
IM In the vicinity of the equilibrium position, where Egs.
M(6)=0, — <0. (A2) (A2) and (A3) are valid, the change of the sign bf(6,t)
90 | g=g, implies the change of the sign of the derivativi¥/d6.

Therefore if a particle had initially a stable orientationtat
=0, then at timed, such thatM(6,t;)/M(68,0) <0, the stable
orientation of a particle is normal to its orientationtatO.
(6= 05). (A3) Therefore, Eq(A4) implies that the change of the sign of a
total torqueM(6,t) causes the change of the stable orienta-
In all cases considered in this study the dependence of th#n to the direction normal to the initial one while the ini-
torqueM(#4,t) can be written as tially unstable orientation of the particle becomes stable.

In the vicinity of the equilibrium

M
M(O)= —
0=~

0=0g
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