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We study the stability of the orientation of an ellipsoidal dielectric particle immersed into a host dielectric
medium under the action of the external electric field. It is assumed that the particle and the host medium have
a finite electric conductivity. We demonstrate that an equilibrium orientation of the ellipsoidal particle changes
with time in a stationary electric field with a constant direction. It was found that during time intervalT1 an
equilibrium orientation of the spheroidal particle with a finite electric conductivity remains the same as the
equilibrium orientation of an ideal dielectric particle. During time intervalT2, whereT=T1+T2 is a period of
the external electric field, the equilibrium orientation of the axis of symmetry of the particle is normal to the
initial equilibrium direction.
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I. INTRODUCTION

The dynamics of solid or liquid particles in a host medium
under the action of an external electric field is of theoretical
and technological interest. Technological application in-
cludes manipulation of microparticles in biotechnology and
genetic engineeringf1g, nanotechnologyf2,3g, and noncon-
tact measurements of physical properties of particles. Inter-
action of an external electric field with an inclusion embed-
ded into a host medium is important for understanding the
mechanisms of the electric breakdown of dielectrics, in at-
mospheric physics and aerosol dynamicsf4–6g. The results
obtained in numerous theoretical and experimental studies on
particle dynamics under the action of the external electric
field were summarized in several survey papers and mono-
graphsf6–9g.

One of the issues that warrant theoretical and experimen-
tal studies is the rotation of liquid or solid particles embed-
ded into a weakly conducting host medium. This issue has
been considered in a number of publications for the case
when a particle has a spherical and a spheroidal shapessee,
e.g., f10–14gd, and the rotation of ellipsoidal particles was
analyzed inf15,16g. These studies were concerned mainly
with applications, and some important aspects of the dynam-
ics of particles in the external electric field were not ad-
dressed. Rotation of ellipsoidal particles with a shell in the
nonstationary external field was studied inf15,16g using a
simplified approach that did not require a comprehensive
analysis of the dynamics of the particle. In this study we
obtained a general expression for an instantaneous moment
of forces acting at an ellipsoidal particles as a function of the
orientation of its principal axes.

For a case of an ideal dielectric the mathematical formu-
lation of the problem is knownf17,18g. The situation is dif-
ferent for the case of a particle with a finite electric conduc-

tivity. Indeed, here an instantaneous moment of forces acting
at a particle depends not only upon its instantaneous orien-
tation but also on its orientation during the earlier time mo-
ments. The reason for this behavior is as follows. The total

torqueMW acting upon a dielectric ellipsoidal particle with a

finite conductivity is the sum of two terms,MW =MW «+MW s. The

first term isMW «=PW «3EW 0, wherePW « is a dipole moment de-

termined by the initial polarization of the medium andEW 0 is

an applied electric field. The second term isMW s=PW s3EW 0,

wherePW s is a dipole moment caused by a flow of an electric
charge from the external source to the surface of a particle.

The dipole momentPW « and the torqueMW « settle during a
short time interval of a local relaxation while the dipole mo-

ment PW s and the torqueMW s settle during timets of a mac-
roscopic relaxation that depends upon the conductivities of
particle and a medium. If an applied electric field is normal
to the axis of symmetry, for the case of an ideal dielectric the

total dipole momentPW =PW « andMW =MW «=0. For the case of a
nonideal dielectric, the dipole moment associated with a free

chargePW s of a rotating particle is not aligned with the ap-
plied electric field because of the finite relaxation time so

thatMW s=PW s3EW 0Þ0W. This difference in the directions of the

external electric field and the dipole momentPW s is associated
with Quincke rotation that was extensively discussed in the
literaturef7,10,13,14g. In this study we investigate a torque
acting at a stationary particle as a function of its orientation
sdirection of its axis of symmetryd with respect to the applied
electric field. Thus we assumed that the angular velocity of a

particleVW =0W.
We show that in a medium with a finite electric conduc-

tivity, a torque acting at the particle in a stationary electric
field can change the orientation of a particle even when the
direction of the field is fixed. Thus, if initially the particle
was in a state of a stable equilibrium, then after some time
the initial orientation of the particle loses its stability. Our
analysis shows that there exist two time intervals,T1 andT2,
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such that during timeT1 the stable orientation of the particle
is the same as for the case of an ideal dielectric. During time
intervalT2, whereT=T1+T2 is a period of the external elec-
tric field, the direction of stable orientation is normal to that
for the case of an ideal dielectric.

This paper is organized as follows. In Sec. II we present a
mathematical formulation of the problem and discuss the un-
derlying physics. Special attention is given to those features
in the formulation of the problem that arise due to a finite
conductivity of a host medium. In particular, we elucidate the
physical aspects that constitute the difference between the
problem for the case of a weakly conducting dielectric and
an ideal dielectric case. In Sec. III we calculate the basic
parameters required to determine the electric field and the
electric current of a dielectric ellipsoid with permittivity«2
and conductivitys2 that is embedded into a host medium
with permittivity «1 and conductivitys1. In Sec. IV we in-
vestigate stability of the orientation of particle in the external
electric field.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us consider an ellipsoidal particle with permittivity«2
and conductivitys2 embedded into a host medium with per-
mittivity «1 and conductivitys1 in the external electric field

with a strengthEW 0 ssee Fig. 1d.
In a conducting medium a potential component of an elec-

tric field EW =−¹W w is determined by the following system of
equations:

¹W ·DW = rex,

]rex

]t
+ ¹W · jW = 0, s1d

where electrostatic inductionDW and electric current densityjW

are determined by the following relations:

DW = «0«EW , jW = sEW , EW = − ¹W w. s2d

Hereafter we assume that a particle is at rest. Formulas2d for
an electrostatic induction implies that a characteristic time
required to attain an equilibrium polarization is substantially
smaller than other characteristic times in the problem. Thus

the time required for a charge redistribution taking into ac-
count a finite conductivity is much larger than the character-
istic time of microscopic relaxation of the dipole moments
induced by local polarization.

The host medium with an embedded particle can be con-
sidered as a piecewise homogeneous medium. Since a charge
is localized at the inhomogeneities, in the case of a piecewise
homogeneous medium it accumulates at the interface bound-
aries. Density of a surface free chargeg is determined by the
following relations:

E rexdV=E gdSor rex= gdsudu¹W uu, s3d

where dsud is a Dirac’s delta function,u=Fsx,y,zd and u
=0 is an equation of the surface. Equationss1d ands3d yield
boundary conditions at the interface boundary:

fNW ·DW g = g, fNW · jWg = −
]g

]t
. s4d

Here fAg=A+−A−, A+ and A− are values of a functionA at

the external and internal surfaces, respectively, andNW is the
external unit normal vector.

As mentioned earlier, the main difference between a
weakly conducting medium and an ideal dielectric is charge
transport from the external source to the interface boundary.

Time variation of a charge constitutes the principal differ-
ence between a leaky dielectric and an ideal dielectric model
f17,18g. In the following section we determined time depen-
dencies of this charge and electric potentialw.

III. ELECTRIC FIELD AND ELECTRIC CURRENT IN A
MEDIUM WITH AN ELLIPSOIDAL INCLUSION

In this section we determine an electric field of an ellip-
soid immersed into a medium with a finite electric conduc-
tivity. Using the obtained results we investigate variation of
the electric field during electric charge flow from the external
source to the surface of the ellipsoid, variation of the electric
chargeg at the surface of the ellipsoid and dependence of the
electric charge relaxation time upon the geometrical param-
eters of the ellipsoid.

Consider an ellipsoidal inclusion with the half-lengths of
the axesa1,a2,a3, permittivity «2 and electric conductivity
s2 that is immersed instantaneously into a host medium
with permittivity «1 and electric conductivitys1 in the exter-

nal electric fieldEW 0 ssee Fig. 1d.
The solution of an electrostatic problem is performed in a

system of coordinates associated with an ellipsoid. In this
system of coordinates the equation of a surface of the ellip-
soid and the components of the electric field are determined
by the following equations:

u = o
i=1

3

xi
2/ai

2 − 1, EW = o
i=1

3

EieW i, eW i = ¹W xi . s5d

If before the insertion of an ellipsoidal particle, the electric
field was homogeneous then electric potentialw can be writ-
ten in the following form:

FIG. 1. Ellipsoid with semiaxesa1,a2,a3 sa1=a2,a3: prolate
spheroid;a1=a2.a3: oblate spheroidd and electric permittivity«2

and conductivitys2 inside a host medium with permittivity«1 in

the external electric fieldEW 0.

YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E71, 056611s2005d

056611-2



w = o
i=1

3

wi = − o
i=1

3

E0ixi„1 + Fisj,td…, s6d

wherej sand coordinatesh ,§ used belowd are the ellipsoidal
coordinates determined throughx1,x2,x3 by formulas pre-
sented inf17g sChap. 1, Sec. 4d andj is chosen such thatj
=0 corresponds to a surface of the ellipsoidu=0. The poten-
tial w in each medium is determined by the Laplace equation:

¹2w = 0. s7d

The expression forFisj ,td can be written as follows:

Fisj,td = Fi1sj,tdusjd + Fi2us− jd, s8d

where

usxd = H1, x ù 0,

0, x , 0.
J

Using formulas6d and solving Eq.s7d with continuity con-
dition for the potentialw we arrive at the following equation:

Fi1sj,td =
Fi2stdI isjd

I is0d
, s9d

wheresfor details of this solution seef17g, Chap. 1, Sec. 4d

I isjd =E
j

` ds

ss+ ai
2dRssd

, Rssd = Îss+ a1
2dss+ a2

2dss+ a3
2d,

s10d

and functionFi2std is determined from the boundary condi-
tions s4d. In order to determine the functionFi2std it is con-
venient to represent a free electric chargegsh ,§ ,td as

gsh,§,td = o
i=1

3

gish,§,td, s11d

wheregish ,§ ,td is a free electric charge accumulated at the
surface of an ellipsoid due to theith component of an electric
field. For the case of an ellipsoid in a homogeneous external
electric field E0istd, it is also convenient to represent
gish ,§ ,td as

gish,§,td =
«0«1

h1s0,h,§d
E0istdxis0,h,§d

2ai
2 g̃istd, s12d

whereh1s0,h ,§d is a Lamé’s coefficient along the coordinate
j at j=0, xis0,h ,§d= uxisj ,h ,§duj=0, h1s0,h ,§d=Îh§ /2Rs0d
and in a Cartesian coordinate systemh1s0d= 1

2oi=1
3 sxi

2/ai
4d1/2.

In order to derive Eq.s12d for gish ,§ ,td one can use Eq.
s6d for a potentialw and Eq.s2d that determines a relation
between a potential and electric field. At the surface

of the ellipsoidal particlesNW ·¹W dw= us1/h1ds]w /]jduj=0 and
u]xi /]juj=0= 1

2fxis0,h ,§d /ai
2g. The latter relations and Eqs.

s8d and s10d imply that sNW ·¹W dw~E0istdxis0d /2ai
2h1s0,h ,§d.

Coefficientsg̃istd depend only upon time.

The unit normal vector at the surface of the ellipsoidNW

can be represented asNW =osidNieW i ssee, e.g.,f17gd with

Ni =
xis0,h,§d

2ai
2h1s0,h,§d

, i = 1,2,3. s13d

Equationss11d–s13d imply the following expression for a
free electric charge accumulated at the surface of the ellip-
soid due to the external electric field,gsh ,§ ,td:

g = gW8 ·NW , s14d

where the formula for the components of the vectorgW8
=osidgi8eW i reads

gi8 = «0«1E0istdg̃istd. s15d

These components have a simple physical meaning. They are
equal to the magnitudes of the electric charge at the apexes

of the ellipsoid:NW 1=eW1, NW 2=eW2, and NW 3=eW3. Hereafter we

will write as it is generally agreed thatNW 1=s1,0,0d, NW 2

=s0,1,0d, and NW 3=s0,0,1d. Then g18 ,g28 ,g38 are the magni-
tudes of the free charge at these locations.

Coefficientsg̃istd are determined from the boundary con-
ditions s4d. The first equation in the boundary conditionss5d
yields

F2istd = −
g̃istdni + f i«

1 + f i«
, s16d

where ni =Rs0dI is0d /2 is a depolarization factor, 0,ni ,1,
oi=1

3 ni =1, f i«=k«ni, and k«=«2/«1−1. The second equation
in the boundary conditionss4d implies that

F2istd =

«0«1ni

s1
Sġ̃ + g̃i

Ė0istd
E0istd

D − f is

1 + f is
, s17d

where f is=ksni andks=s2/s1−1.
Formulass16d and s17d yield the following equation for

g̃istd:

ġ̃istd + g̃istdS Ė0istd
E0istd

+
1

ti
D =

ks − k«

1 + f i«

1

t0
, s18d

wheret0=«0«1/s1 andti =t0fs1+ f i«d / s1+ f isdg.
Assuming that the initial free electric charge of the par-

ticle is zero, the expression forg̃istd can be written as

g̃istd = g̃is`dPistd, Pistd =
1

E0istd
1

ti
E

0

t

e−t/tiE0ist − tddt,

s19d

where g̃is`d=sks−k«d / s1+ f isd. If the initial free electric
charge of the particle is not zero one must account for the
electric field produced by this charge. Hereafter it is assumed
that initially the particle was not charged.

Formula s19d allows us to determine the functionsPistd
for givenE0istd and parametersti that characterize a system.
In a case whenE0istd=const the result is presented below. In
the case of a stationary field the result is given by Eq.s47d.
In this study we expressed the considered physical character-
istics through functionsPistd.
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Substituting Eqs.s18d and s19d into Eq. s16d yields

Fi2std =
1 − Pistd
1 + f i«

+
Pistd

1 + f is
− 1. s20d

The magnitudes of the electric fields and currents can be
determined using formulass2d, s5d, ands20d:

EW 2 = o
i=1

3

E0istdeW iS1 − Pistd
1 + f i«

+
Pistd

1 + f is
D ,

jW2 = s2EW 2, DW 2 = «0«2EW 2. s21d

The value of the accumulated charge at the surface can be
determined from formulass11d, s12d, ands19d:

g =
«0«1

h1s0doi=1

3
E0istdxis0d

2ai
2

ks − k«

1 + f is
Pistd. s22d

According to Eq.s21d the electric fieldEW 2 can be written as

a sum of two fields,EW 2=EW «+EW s, where the fieldEW « describes

a renormalization of the external electric fieldEW 0 due to po-

larization. At the initial time,t=0, EW «s0d recovers the known
formula for the electric field of the dielectric ellipsoid with a
permittivity «2 imbedded into the host medium with a per-

mittivity «1 ssee, e.g., Ref.f17gd. The termEW s describes a
renormalization of the external field due to an accumulation
of the electric charge at the surface. If the external field is
constant,E0i =const, thenPistd=1−e−t/ti, and att→`, the
configuration of the electric field is identical to the configu-
ration of the electric field produced by an ellipsoidal inclu-
sion with electric conductivitys2 imbedded into the host
medium with electric conductivitys1.

Formula s22d describes a free charge at the surface of a
particle. The total charge is

gc = «0fEW g ·NW . s23d

The latter formula can be rewritten as

gc =
«0

h1s0doi=1

3
xis0dE0istd

2ai
2 S „1 − Pistd…k«

1 + f i«
+

Pistdks

1 + f is
D .

s24d

Thus at the initial timePistd=0, the total charge coincides
with the polarization charge that is formed during micro-
scopic time by local polarization of the material.

Since time variation of electric charges and currents is
essentially determined by the magnitude of the relaxation
times ti it is of interest to analyze the dependence of these
relaxation times on geometrical parameters of the ellipsoid.
Expression forti fsee formulas after Eq.s18dg yields

ti − t0 = t0
sk« − ksdni

1 + ksni
. s25d

Equations25d implies that whenk«,ks, ti ,t0 for an arbi-
trary direction i. It is known that conditionsti .t0 or k«

.ks are the necessary conditions for Quincke rotation that
has been extensively discussed in the literaturef7,14g and is

not a subject of this study. Equations25d allows us to deter-
mine a ratio of relaxation times along different axes of the
ellipsoid,a andb:

ta − t0

tb − t0
=

nb
−1 + ks

na
−1 + ks

. s26d

Equationss25d and s26d and conditions −1,ks,`, 0,ni
,1 imply that whenk«.ks andna,nb, thenta,tb, while
whenk«,ks andna,nb thenta.tb. It is known f17g that
polarization factorsn1,n2,n3 and half-lengths of the axes of
ellipsoid a1,a2,a3 are related by the following condition:
whena1.a2.a3 thenn1,n2,n3. Therefore if a relaxation
time of a free electric charge inside an ellipsoid is less than a
characteristic relaxation time in the host medium,ti ,t0 or
k«,ks, then relaxation of a free electric charge occurs faster
along the shorter axes. Alternatively, whenti .t0, charge
relaxation proceeds faster in the direction of the longer axes.

For a cylinder with the axis directed along the coordinate
axis x3, n1=n2= 1

2 and n3=0. The relaxation time along the
coordinate axisx3, t3=t0 and relaxation times along axesx1
andx2, t1=t2=t0fsk«+2d / sks+2dg. In the case of a thin disk
with the axis directed along the coordinate axisx3, n1=n2
=0, n3=1 and relaxation times aret3=t0fsk«+1d / sks+1dg,
t1=t2=t0.

Polarization factorsni can be expressed as functions of
the ratios of the half-lengths of the axes of ellipsoid to a
half-length of one of the axes. Hereafter we expressedni as
ni =nisa18 ,a28d, wherea18=a1/a3 and a28=a2/a3. In Fig. 2 we
showed the dependence ofn1 as a function of parametersa18
and a28. Since n1sa18 ,a28d=n2sa28 ,a18d, the same set of the
curves describes the dependence ofn2sa28 ,a18d by a change of
the parameters,a18→a28 anda28→a18. In Fig. 3 we showed the
dependencen3sa18 ,a28d by presenting the set of curvesn3

=n3sa18d for different values of parametera28.
Consider now the behavior of a total surface chargegc

which is determined by expressions24d. As in the case of a
free charge expression forgc can be written similarly to Eq.
s14d:

gc = gWc ·NW , s27d

where

gci = «0EoiSk«„1 − Pistd…
1 + f i«

+
Pistdks

1 + f is
D . s28d

The valuesgci are the magnitudes of the total surface charge

at the locationsNW 1=s1,0,0d, NW 2=s0,1,0d and NW 3=s0,0,1d
at the surface of the ellipsoid.

In a particular case of a sphereni =
1
3 and the coefficients

f i« andPistd are independent of the directioni. In this case
gci /gck=E0i /E0k, and the electric field inside a sphere is di-
rected along the external electric field. In the case of an
ellipsoid gci /gckÞE0i /E0k, and the direction of the internal
electric field varies with time even when the direction of the

external electric fieldEW 0 is constant.
Equationss27d and s28d imply that a charge at any loca-

tion at the ellipsoid’s surface is determined by three compo-
nentsgci. In Fig. 4 we showed the time dependence of the
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surface charge,gc1std, for different values ofa18 anda28 in the

case of the constant external fieldEW 0 whenEW 0·eW2=0 and the
angleu betweenEW 0 andeW3, u=p /4. In Fig. 5 we showed the
time dependence of the surface chargegc3std for the same
values of the parameters.

Inspection of Figs. 4 and 5 shows that whenk«.ks the
total surface chargegcstd decreases with time. The cause for

this behavior is that the sign of the free chargegstd flowing
to the surface is opposite to the sign of the polarization
chargegcs0d. This is exactly the situation which occurs in the
case of Quincke rotation. Whenk«,ks, the sign of the free
chargegstd flowing to the surface coincides with the sign of
the polarization chargegcs0d, and the total surface charge
gcstd grows with time.

FIG. 2. Dependence of polar-
ization factorn1 vs the nondimen-
sional lengthsa18 and a28, a38=1
fs1d a28=2; s2d a28=5; s3d a28=10;
s4d a48=20g.

FIG. 3. Dependence of polar-
ization factorn3 vs the nondimen-
sional lengthsa18 and a28, a38=1
fs1d a28=2; s2d a28=5; s3d a28=10;
s4d a48=20g.
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FIG. 4. Time dependence of a surface chargegc1 at locationNW

=s1,0,0d in a constant external electric fieldEW 0. Vector EW 0 is lo-

cated in the planeeW1, eW3 sEW 0·eW2=0d and is directed by the angleu
=p /4 with the axis of symmetry of the spheroidss: a18=a28=0.05,
k« /ks=0.1, prolate spheroid;h: a18=a28=50, k« /ks=0.1, oblate
spheroid;L: a18=a28=1, k« /ks=0.1, sphere;n: a18=50, a28=0.05,
k« /ks=0.1, ellipsoid;P: a18=a28=0.05, k« /ks=10, prolate spher-
oid; j: a18=a28=50, k« /ks=10, oblate spheroid;l: a18=a28=1,
k« /ks=10, sphere;m: a18=50, a28=0.05,k« /ks=10, ellipsoidd.

FIG. 5. Time dependence of a surface chargegc3 at locationNW

=s0,0,1d in a constant external electric field. VectorEW 0 is located in

the planeeW1, eW3 sEW 0·eW2=0d and is directed by the angleu=p /4 with
the axis of symmetry of the spheroidss: a18=a28=0.05, k« /ks

=0.1, prolate spheroid;h: a18=a28=50, k« /ks=0.1, oblate spheroid;
L: a18=a28=1, k« /ks=0.1, sphere;n: a18=50, a28=0.05, k« /ks

=0.1, ellipsoid;P: a18=a28=0.05, k« /ks=10, prolate spheroid;j:
a18=a28=50, k« /ks=10, oblate spheroid;l: a18=a28=1, k« /ks=10,
sphere;m: a18=50, a28=0.05,k« /ks=10, ellipsoidd.

FIG. 6. Time dependence of a free chargeg18 at location NW

=s1,0,0d in a constant external electric field. VectorEW 0 is located in

the planeeW1, eW3 sEW 0·eW2=0d and is directed by the angleu=p /4 with
the axis of symmetry of the spheroidss: a18=a28=0.05, k« /ks

=0.1, prolate spheroid;h: a18=a28=50, k« /ks=0.1, oblate spheroid;
L: a18=a28=1, k« /ks=0.1, sphere;n: −a18=50, a28=0.05, k« /ks

=0.1, ellipsoid;P: a18=a28=0.05, k« /ks=10, prolate spheroid;j:
a18=a28=50, k« /ks=10, oblate spheroid;l: a18=a28=1, k« /ks=10,
sphere;m: a18=50, a28=0.05,k« /ks=10, ellipsoidd.

FIG. 7. Time dependence of a free chargeg38 at location NW

=s0,0,1d in a constant external electric field. VectorEW 0 is located in

the planeeW1, eW3 sEW 0·eW2=0d and is directed by the angleu=p /4 with
the axis of symmetry of the spheroidss: a18=a28=0.05, k« /ks

=0.1, prolate spheroid;h: a18=a28=50, k« /ks=0.1, oblate spheroid;
L: a18=a28=1, k« /ks=0.1, sphere;n: a18=50, a28=0.05, k« /ks

=0.1, ellipsoid;P: a18=a28=0.05, k« /ks=10, prolate spheroid;j:
a18=a28=50, k« /ks=10, oblate spheroid;l: a18=a28=1, k« /ks=10,
sphere;m: a18=50, a28=0.05,k« /ks=10, ellipsoidd.

YU. DOLINSKY AND T. ELPERIN PHYSICAL REVIEW E71, 056611s2005d

056611-6



In Figs. 6 and 7 we showed the behavior of the compo-
nentsgi8 that according to Eqs.s14d and s15d is completely
determined by the behavior of a surface free chargegstd.
Inspection of these figures shows that for the same values of
parameters the sign ofgi8std is opposite to the sign ofgcis0d
whenk«.ks and the sign ofgi8std coincides with the sign of
gcis0d whenk«,ks.

Time behavior of the electric field inside an ellipsoidEW 2std
is shown in Figs. 8 and 9. In Fig. 8 we showed time variation
of the magnitude of the electric fieldE2std while in Fig. 9 we
showed the time dependence of the angleastd
=tan−1sE21/E23d. Inspection of these figures reveals that
whenk«.ks, the magnitude of the electric fieldE2std grows
while for k«,ks it decreases with time. The reason for this
behavior is that whenk«.ks the electric field produced by

the free chargegstd is directed along the external fieldEW 0 and
it partially compensates the field produced by the polariza-
tion charge.

IV. STABILITY OF THE ORIENTATION OF THE
ELLIPSOIDAL PARTICLE IN THE EXTERNAL

ELECTRIC FIELD

Let us now analyze the stability of the orientation of a
particle by considering the dependence of the torque acting
at the particle upon the orientation of the particle with re-
spect to the direction of the external electric field. To this end
we use the following formula for a torque acting at the par-
ticle:

MW = «1PW 3 EW 0, s29d

where PW is a total dipole moment of the ellipsoid. Using

formulass3d the expression forPW can be written as

PW =E gcrW dS, s30d

where integration is performed over the surface of an ellip-
soid. Substituting Eq.s24d into Eq. s30d we find that

PW = «0Vo
i=1

3

E0ieW iS „1 − Pistd…k«

1 + f i«
+

Pistdks

1 + f is
D . s31d

For t!ti, in the constant external fieldPistd, t /ti, and for-
mula s31d recovers the known expression for a dipole mo-
ment of a dielectric ellipsoidssee f17g, Chap. 2, Sec. 9d.
Equationss29d ands31d yield a formula for a torque acting at
the ellipsoid for an arbitrary orientation of the external elec-
tric field and axes of the ellipsoid:

MW = «0«1Vo
i=1

3

o
k=1

3

E0iE0k«ikmeWmS „1 − Pistd…k«

1 + f i«
+

Pistdks

1 + f is
D ,

s32d

where«ikm is a fully nonsymmetric unit tensor.
Let us consider a spheroid with a coefficient of the depo-

larizationn1=n2= 1
2s1−nd, n=n3, f1«= f2«, and f1s= f2s. In a

case of a prolate in the direction ofeW3 spheroid,n3,n1,n2,

FIG. 8. Time dependence of a magnitude of the electric field

inside spheroid in a constant external electric field. VectorEW 0 is

located in the planeeW1, eW3 sEW 0·eW2=0d and is directed by the angle
u=p /4 with the axis of symmetry of the spheroidss: a18=a28
=0.05, k« /ks=0.1, prolate spheroid;h; a18=a28=50, k« /ks=0.1,
oblate spheroid;L: a18=a28=1, k« /ks=0.1, sphere;n: a18=50, a28
=0.05, k« /ks=0.1, ellipsoid;P: a18=a28=0.05, k« /ks=10, prolate
spheroid;j: a18=a28=50, k« /ks=10, oblate spheroid;l: a18=a28
=1, k« /ks=10, sphere;m: a18=50, a28=0.05,k« /ks=10, ellipsoidd.

FIG. 9. Time dependence of the angle between the internal elec-
tric field and the axis of symmetry of spheroid in a constant external

electric field. VectorEW 0 is located in the planeeW1, eW3 sEW 0·eW2=0d and
is directed by the angleu=p /4 with the axis of symmetry of the
spheroid ss: a18=a28=0.05, k« /ks=0.1, prolate spheroid;h: a18
=a28=50, k« /ks=0.1, oblate spheroid;L: a18=a28=1, k« /ks=0.1,
sphere; n: a18=50, a28=0.05, k« /ks=0.1, ellipsoid; P: a18=a28
=0.05,k« /ks=10, prolate spheroid;j: a18=a28=50, k« /ks=10, ob-
late spheroid;l: a18=a28=1, k« /ks=10, sphere;m: a18=50, a28
=0.05,k« /ks=10, ellipsoidd.
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while for an oblate ellipsoidn3.n1,n2. The limiting cases of
a cylindersn3!n1,n2d and of a disksn3@n1,n2d were con-
sidered earlier.

Let us define angleu in the plane spanned by vectors

EW 0,eW3 ssee Fig. 1d. The electric fieldEW 0 can be represented as
follows:

EW 0 = E0 cosueW3 − E0 sinueW1. s33d

In the adopted coordinate systemssee Fig. 1d a total torque

acting at the particle is directed along theeW2 axis, i.e.,MW

=MeW2. Using Eqs.s32d and s33d we arrive at the following
formula for M:

M = −
«0«1VE0

2 sins2ud
2

Fk«S1 − P3std
1 + f3«

−
1 − P1std
1 + f1«

D
+ ksS P3

1 + f3s

−
P1

1 + f1s
DG . s34d

In a constant electric field att=0, P3s0d=P1s0d and

Ms0d =
«0«1VE0

2 sins2ud
4

k«
2s3n − 1d

s1 + f1«ds1 + f3«d
. s35d

Equations35d recovers the known formula for a torque act-
ing at the dielectric spheroid as a function of the angle be-
tween the axis of symmetry of the spheroid and the direction

of the external electric fieldEW 0 ssee, e.g.f17,18gd. Two ori-
entations when the torque vanishes,u=0 andu=p /2, corre-
spond to stable and unstable equilibrium orientations forn
,1/3 and, inversely, to unstable and stable equilibrium ori-
entations forn.1/3 sfor details see the Appendixd.

Let us consider now stability of equilibrium orientations
for t→`. For t /t1@1 and t /t2@1, P1std=P2std=1 and
Mst→`d=M` is determined by the following formula:

M` =
«0«1VE0

2 sins2ud
4

ks
2s3n − 1d

s1 + f1sds1 + f3sd
. s36d

Comparing Eqs.s35d ands36d shows that equilibrium orien-
tations att=0 andt→` coincide. It can be shown that at the
intermediate times 0, t,` the sign ofM` is the same as the
sign of Ms0d even in the cases with a strong anisotropy,t1

@t3 or t3@t1.
Consider now a stationary external electric fieldE0std

=Ē0 cossvtd. Substituting this expression into Eq.s19d yields
a formula forPistd that in the limit t@t1,t2 reads

Pistd =
cossvtd + vti sinsvtd

1 + v2ti
2

1

cossvtd
. s37d

Substituting Eq.s37d into Eq. s34d we arrive at the fol-
lowing formula for the total torque acting at a particle:

M = M« + Ms, s38d

where

M« = M0
3n − 1

2

k«
2 cos2svtd

s1 + f3«ds1 + f1«d
, M0 =

«0«1VĒ0
2 sins2ud
2

.

s39d

The expression forMs can be written as

Ms = −
M0sk« − ksds3n − 1d

2L
fsa1 + a2v2t0

2dcos2svtd

+ b0vt0sksb1 + b2k«v2t0
2dsins2vtdg, s40d

where

a1 = ks + k« +
n + 1

2
ksk«, a2 =

3k« − ks + 3d1k«
2 + d2k«

3

s1 + f3sds1 + f1sd
,

s41d

d1 =
1 + n

2
+ ks

ns1 − nd
2

,

d2 =
s1 − nd2

4
+ n2 +

ns1 − nd
2

S1 + ks

1 + n

2
D , s42d

b0 =
1

2

s1 + f3«ds1 + f1«d
s1 + f3sds1 + f1sd

,

b1 = 2 +ks

1 + n

2
, b2 = 2 +k«

1 + n

2
, s43d

L = s1 + f3sds1 + f1sds1 + f3«ds1 + f1«ds1 + v2t1
2ds1 + v2t3

2d.

s44d

The Eqs.s39d and s40d yield the following expression for a
total torque:

M = M0
3n − 1

2
fMc + 2Ms tansvtdgcos2svtd, s45d

where

Mc =
k«

2

s1 + f1«ds1 + f3«d
+

ks − k«

L
sa1 + a2v2t0

2d s46d

and

Ms =
b0vt0

L
sb1ks + b2k«v2t0

2dsks − k«d. s47d

When v→0, Ms→0 andMc=ks
2 / s1+ f1sds1+ f3sd, i.e., ex-

pressions36d is recovered.
Equation s45d yields the following condition for the

change of an orientation of a particle with respect to its ori-
entation at the initial momentt=0:

Mc + 2Ms tansvtd , 0. s48d

Using Eqs.s39d and s45d it can be shown that an inequality
s48d is equivalent to the condition thatMstd /Ms0d,0. In the
Appendix we demonstrated that this condition implies the
change of the direction of the stable orientation of the ellip-
soid.
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Let us determine now a time interval inside the period of
the external electric fieldT during which the conditions48d
is satisfied. Consider only the case whenMs,0, e.g.,sks

,k«d andMc.0. In this case the inequalitys48d implies that
there exist two time intervals where this inequality is satis-
fied:

tan−1S Mc

2uMsu
D , vt ,

p

2

andp + tan−1S Mc

2uMsu
D , vt ,

3p

2
. s49d

During two time intervals determined by inequalitiess49d the
direction of the stable orientation becomes normal to the
direction of the initial stable orientation, i.e.,us→us+p /2,
whereus is an angle between the external electric field and
the principal axis of the ellipsoid in the initial stable equilib-
rium. For a prolate spheroidus=0, while for an oblate spher-
oid us=p /2. Define two time intervals,T1 and T2=T−T1.
During time intervalT1 the stable orientation of the particle
coincides with the initial stable orientation while during time
interval T2 fsum of two time intervals determined by Eqs.
s49dg it changes. Equationss49d imply that

T1 =
1

v
Xp + 2 tan−1S Mc

2uMsu
DC, T2 =

2

v
tan−1S2uMsu

Mc
D .

s50d

Assume that an ellipsoid is subjected to random perturba-
tions uniformly distributed in time. Then a probabilityp1 that
an equilibrium orientation of the ellipsoid is the same as in
the case of an ideal dielectricp1=T1/ sT1+T2d is

p1 =
1

2
+

1

p
tan−1S Mc

2uMsu
D , s51d

while the probability that its equilibrium orientation is nor-
mal to that in the case of an ideal dielectricp2=T2/ sT1

+T2d is

p2 =
1

p
tan−1S2uMsu

Mc
D . s52d

Consider a limiting case whenuMsu!Mc and vt0!1. This
situation occurs in the rangesksù1, vt0!1 and ks!1,
vt0!ks. In these limiting cases

Ms =
b0b1kssk« − ksdvt0

L
, Mc =

ks
2

s1 + f1sds1 + f3sd
,

s53d

and

p2 =
1

p

k« − ks

ks

vt0S2 + ks

n + 1

2
D

s1 + f1sds1 + f3sd
. s54d

Thus the probability to detect an ellipsoid with an orientation
normal to the orientation in the case of an ideal dielectric
depends only upon the parameters of the system and the
frequency of an applied electric field and does not depend

upon its amplitude. It must be noted that independent of the
magnitudes ofMc and uMsu, p2,p1, p2,1/2, andp1.1/2.

V. CONCLUSIONS

We studied the moment of forces acting on a stationary
dielectric ellipsoidal particle imbedded in a host dielectric
medium with a finite electric conductivity under the action of
a homogeneous, time independent or varying with time, elec-
tric field. Using a dipole moment approach we showed that
in a constant electric field stable orientations of an ellipsoid
for an ideal dielectric and a dielectric with a finite electric
conductivity are the same.

We demonstrated that an equilibrium orientation of the
ellipsoidal particle changes with time in a stationary electric
field with a constant direction. It was found that during time
interval T1 an equilibrium orientation of the spheroidal par-
ticle with a finite electric conductivity remains the same as
the equilibrium orientation of an ideal dielectric particle.
During time intervalT2, whereT=T1+T2 is a period of the
external electric field, the equilibrium orientation of the axis
of symmetry of the particle is normal to this direction.

The derived expressions for electric fields and currents
fEqs.s21d and s22dg and dipole momentfEq. s31dg are valid
also for the case of a rotating ellipsoid. In the latter casexis0d
andE0istd are spatial coordinates and components of electric
field in a frame attached with the ellipsoid. Transformation
into the laboratory frame is performed using the formulas
E0i =OikstdGkstd andxi =Oimx̄m, whereGkstd and x̄m are com-
ponents of the electric field and coordinates in a laboratory
frame. The orthogonal matrixOik is related with angular ve-
locity VW by an equationȮik=«imlVmOlk, where «iml is the
Levi-Civita tensor. Using these formulas and expressions for
Pistd and dipole momentPW std allows to obtain equations
governing the dynamics of a dipole moment similar to equa-
tions used in the studies of the Quincke rotationf13,14g.

The obtained results imply a possibility of the existence
of a mechanism of rotation of liquid particles that is alterna-
tive to the known effect of Quincke rotation. Indeed, the
external electric field causes the deformation of a liquid par-
ticle along the direction of the field, and we showed that the
direction of the equilibrium orientation of the ellipsoidal par-
ticle changes with time in a stationary external field.

In this study we considered an isotropic medium. The
situation is completely different in the case of an anisotropic
material. In the latter case the torque depends not only upon
the orientation of the ellipsoid with respect to the direction of
the external electric field but upon the mutual orientations of
the principal axes of the medium, principal axes of the ellip-
soid and the direction of the external electric field. Clearly, in
this case our approach that uses the ellipsoidal coordinates
and expansion of the external electric field into independent
components directed along the principal axes of the ellipsoid
is not valid. In this study we also considered only the case
when Ms,0, e.g., sks,k«d and Mc.0. Analysis of this
problem in other cases is a subject of ongoing investigation.

APPENDIX

Neglecting inertial effects the equation describing dynam-
ics of an orientation of a spheroid in the vicinity of the equi-
librium position reads
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hu̇ = Msud, sA1d

where a coefficienth.0 depends upon the viscosity of a

medium,M is a torque, andu̇ is angular velocity.
EquationsA1d implies that the angle of a stable orienta-

tion us is determined by two conditions:

Msusd = 0, U ]M

]u
U

u=us

, 0. sA2d

In the vicinity of the equilibrium

Msud=U ]M

]u
U

u=us

su − usd. sA3d

In all cases considered in this study the dependence of the
torqueMsu ,td can be written as

Msu,td = M0sudM̃std, M0 =
«0«1VE0

2 sins2ud
2

, sA4d

where M̃std is some normalization function that does not
depend on angleu fsee Eqs.s34d, s36d, ands39dg.

In the vicinity of the equilibrium position, where Eqs.
sA2d and sA3d are valid, the change of the sign ofMsu ,td
implies the change of the sign of the derivative]M /]u.
Therefore if a particle had initially a stable orientation att
=0, then at timet1 such thatMsu ,t1d /Msu ,0d,0, the stable
orientation of a particle is normal to its orientation att=0.
Therefore, Eq.sA4d implies that the change of the sign of a
total torqueMsu ,td causes the change of the stable orienta-
tion to the direction normal to the initial one while the ini-
tially unstable orientation of the particle becomes stable.
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